On-orbit Serviceability of Space System Architectures

نویسنده

  • Matthew G. Richards
چکیده

On-orbit servicing is the process of improving a space-based capability through a combination of in-orbit activities which may include inspection; rendezvous and docking; and value-added modifications to a satellite’s position, orientation, and operational status. As a means to extend the useful life or operational flexibility of spacecraft, on-orbit servicing constitutes one pathway to a responsive space enterprise. Following launch, traditional satellite operations are tightly constrained by an inability to access the orbiting vehicle. With the exception of software upgrades from ground controllers, operators are wedded to supporting payload technologies that become rapidly obsolete and to bus structures that deform during the stress of launch and degrade in the harsh environment of space. On-orbit servicing offers satellite operators an option for maintaining or improving space-based capabilities without launching a new spacecraft. Numerous studies have been performed on on-orbit servicing, particularly regarding the architecture of the servicing provider. Several customer valuation case studies have also been performed to identify the economic case (or lack thereof) for different categories of servicing missions. Little work, however, has been done to analyze the tradespace of potential on-orbit servicing customers—a global analysis of operational satellites currently orbiting the Earth. The goal of this research is to develop and test a methodology to assess the physical amenability of satellites currently in operation to on-orbit servicing. As defined here, physical amenability of a target satellite, or “serviceability,” refers to the relative complexity required of a teleoperated or autonomously controlled robotic vehicle to accomplish on-orbit servicing. A three-step process is followed to perform serviceability assessments. First, a taxonomy of space systems is constructed to add structure to the problem and to identify satellite attributes that drive servicing mission complexity. Second, a methodology is proposed to assess serviceability across the four servicing activities of rendezvous, acquire, access, and service. This includes development of an agent-based model based on orbital transfers as well as a generalized framework in which serviceability is decomposed into four elements: (1) knowledge, (2) scale, (3) precision, and (4) timing. Third, the value of architecture frameworks and systems engineering modeling languages for conducting serviceability assessments is explored through the development of a discrete event simulation of the Hubble Space Telescope. The thesis concludes with prescriptive technical considerations for designing serviceable satellites and a discussion of the political, legal, and financial challenges facing servicing providers. Thesis Supervisors: Daniel E. Hastings, Professor of Aeronautics and Astronautics and Engineering Systems Donna H. Rhodes, Senior Lecturer of Engineering Systems

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Evaluation of the High-altitude Launch Technique to Orbit Using Atmospheric Properties

The purpose of this paper is to perform the feasibility and performance evaluation of the High-altitude launch technique using high altitude atmospheric Properties to near earth orbits. The current propulsion transportation system from Earth to space has been deemed by many to be expensive, unreliable, and an unnecessarily dangerous means of travel to space. It is suggested in this paper to ana...

متن کامل

Orbit Spaces Arising from Isometric Actions on Hyperbolic Spaces

Let be a differentiable action of a Lie group on a differentiable manifold and consider the orbit space with the quotient topology.  Dimension of is called the cohomogeneity of the action of  on . If is a differentiable manifold  of  cohomogeneity one under the action of  a compact and connected Lie group, then the orbit space is homeomorphic to one of the spaces , , or . In this paper we suppo...

متن کامل

Dynamics of Space Free-Flying Robots with Flexible Appendages

A Space Free-Flying Robot (SFFR) includes an actuated base equipped with one or more manipulators to perform on-orbit missions. Distinct from fixed-based manipulators, the spacecraft (base) of a SFFR responds to dynamic reaction forces due to manipulator motions. In order to control such a system, it is essential to consider the dynamic coupling between the manipulators and the base. Explicit d...

متن کامل

On-orbit Assembly Strategies for Next-generation Space Exploration

As the world looks ahead to the next generation of space exploration programs, we must focus on designing architectures for both sustainability and affordability. By viewing exploration programs as a “system-of-systems,” we can focus on reducing costs through the use of flexible, reusable infrastructures to support various aspects of manned and unmanned spaceflight. This paper addresses one key...

متن کامل

Exploring Design and Policy Options for Orbital Infrastructure Projects

The space industry is currently at a significant inflection point. New economies are forming in lowEarth orbit (LEO), driven by miniaturization of technologies and the promise of lower launch costs, which should then allow many of these LEO systems to capitalize on designs incorporating smaller, shorter-lived spacecraft in highly-disaggregated constellations. Meanwhile, many spacecraft at geosy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006